PROBLEM CONCERNING A SPHERICAL PISTON IN A
COMPRESSIBLE MEDIUM WITH "DRY' FRICTION

V. V. Bashurov UDC 539.374

We study the self-similar problem concerning the motion of a spherical piston in a medium
with "dry" friction. The piston moves with constant velocity in a nonideal medium.

1. We consider a spherical piston which begins its motion from the coordinate origin, moving with
constant speed in a medium with the equation of state

~Y3 3" +20% =K (p/p,— 1) ?>1, p>p,
0" 420° =0, p<p,
Yy (@" — o) =xp, %<0 (1.1)

Here o ¥ and ¢ are, respectively, the radial and azimuthal stresses, p is the pressure, p and p,
are densities, K is the volume compression coefficient, » is the coefficient of dry friction, and up is the
speed of the piston,

Similar equations of state were considered in [1, 21.

The equations of motion have the form

ds™ r__ 9
?)IZ u 0;: :z or 26 prc)
(1.2)

r

op aop ou 2up
a5 T U5 eyt =0
The initial and boundary conditions for Eqs. (1.1) and (1.2) have the form
u=p=0, p=p,for t=0, r>0

u =up for r =uyt
v—>0, p—>0, p—p, for r->o

Dimensional analysis [3] shows that the problem is self-similar, We introduce the dimensionless
quantities

A= 1 [T;T/)a_w)ffﬂ]%’ U=u (n%{_y/z

P=pK?' R =0pp7" a=4bn(1— 1)1

In these variables the system (1.2) assumes the form

av | U 1 dP a P
T )= —mE e
dR | U R dU RU
F(F—t)+ i =0
P=(R—1) (1.3)

We solve the system (1.3) for the derivatives wherein we use the third of the relations (1.3)
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dh -1 (U‘ . 7\‘)2 Pl/Y-l 1 (1-4)
4P e 2T =4 (P L)+ aP
dh YU — AR PV

The boundary conditions for equations (1.4) have the form

U =) fOI‘ A= ul’((i—__f/ogx)—l(\)n

U—~>0, P>0 for A\-»oo.

2. Taking equations (1.1) into account, we can write the conditions at a strong discontinuity [4] in the
form

(P 1) (U, — ) = (PY* + 1) (U, — 1) @1
Py — (P 1)U\ (A = Uy) = Py — (P - 1) U, (A — U

If the front of the shock wave propagates through a quiescent medium, we have P, = 0, U, = 0 and the
. conditions at the discontinuity assume the form

P+ ) (U, === P~PY + 1)U, (A —U) =0

A degenerate strong discontinuity (P; — 0, Uy — 0) yields a value of A corresponding to the propaga-
tion speed of a weak discontinuity, Some calculations show that ‘

P> A =0, y=1, A=1

Eliminating P; from equations (2.1), we obtain a curve in the AU plane. It is not difficult to show that
this curve lies below the "initial data" line, i.e,, the line A =U, Indeed, from the first of the relations (2.1)
it is evident that for A > 0, P; > 0, we have U; < A,

The singular points of the system of equations (1.4) are determined by the system of algebraic equa-
tions

AU — )2 Pyt — 1] =0
Tl (U — A) PUr (Pi L )t 120 =0 2.2)
20(U — M) (PVY 1) +aP =0

Let A =0. Then
1 laU P (P 4 1)1 42U =0,  20%(P'W41) 4 aP =0
IfU=0,thenP =0. If U # 0, we have

Y PUT = — 2(PYY 1), Pt = — 2(y o+ 2)t @ .3)
U=-ryh 2.4

For some values of @ and vy, Egs, (2.3) and (2.4) define real singular points.

Assume that A # 0, In this case, multiplying the second of equations (2.2) by (U —A) and using the
first equation, we find that the third equation is a consequence of the first two, Thus, in this case the
singular points are determined by the system of equations

(U = WPt — 1 =0, 20U (U — &) (P 1) 4+aP =0 @ .5)
and form a singular curve,

The singular points (0, 0,0),(0, sy~ 2@y + 2) 120 1) | =2yt + 2)71TY) lie outside the region
of flow and have an influence only on the location of the integral curves in the A UP space; no single tra-
jectory (except for the trajectory corresponding to the equilibrium state) passes through these points.

Consider now the behavior of the "singular" curve, From equations (2.5) it follows that the relation

(T — Q)Y =D = P 2.6)

112



5 is satisfied on the singular curve.

From equations (2.1) we find, after some simple manipula-
tions, that on the shock wave

(\ — Uy = PO-D/x(P1/¥ 4 1yt

7 A trajectory starting at the line U — A = 0 does not intersect
. the singular curve before it intersects the strong discontinuity

a1 curve, Indeed, let P, be the initial pressure. By virtue of the
4 equations (1.4),

Fig.1 dP a(h—U)
& <0 —5H—>0

Let us calculate the value of the right side of Eq. (2.6) for
(7» . U)2 — P(-1)/x (PLiv - 1.)-1 »
This value is equal to
Y Ia=0P (P 4 )er /a0
Since ¢ > 1, this value is less than P, ie., Eq. (2.6) cannot be satisfied at any point of a trajectory

preceding the shock wave,

In Fig. 1 we display the "initial data" line 1, the shock wave 2, the singular curve 3, and several char-
acteristic trajectories with  =1: the separatrix 4, a continuous solution 5, and the solution with the shock
wave 6. It is clear that a continuous flow region is impossible withy > 1, However, with y =1 there is a
possibility of such a flow, trajectories of which were uncovered by numerically solving Eq. (1.4)., We dis-
cuss the numerical results in Sec. 4, From now on we consider the case y =1,

3. Fory =1, equations (1.4) assume the form

dUld) = [o(U — WP (P 4 1) 4 20U — M2— 1] (3.1)
dPldh = —[20(U — M(P +1) + aPIN(U — A)2— 1]

The singular curve is determined as the solution of the system
(UM =1, 20U — MNP +1) +aP =0

In the AU plane the singular curve breaks up into two lines of which the line U =X — 1 is of interest.
On this line only the state

h=1, U =0, P =0

is physically realizable. At other points P < 0. Thus the point (1, 0, 0) is a singular point through which a
trajectory can pass. We note that this point corresponds to a weak discontinuity; at this point we can
"splice together" a quiescent region and a perturbed region,

We examine the behavior of the integral curves in a neighborhood of the singular point. In accord
with [5], instead of the system (3.1), we consider the system
dUldt =a (U — M) P (P 1) 42U
dPldv = 22U (U — M) (P +1) —aP (3.2)
diidt = A [(U — M2 — 1]

and we expand the solution in a series in a neighborhood of the point (1, 0, 0). The linearized system has
the form

aU
dT

dp s
=—aP+20, <-=20—aP, =-20428 (3.3)
Here 5 =A —1. The characteristic numbers of the system (3.3), written in increasing order, are the
three numbers —0, 2, 2 — «. To each characteristic number there corresponds a solution of the system

(3.3). These solutions are easy to obtain; in vector form they are
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Yi=(01,2/a,1), Y,=(0,0, &), Yy = (207, gl2-2)7, 23 2g(2-0)7)
The general solution of the system (3.3) may be represented in the form
Y =CGY, +G6Y, +CY,

Integral curves come into the pointA =1, U = 0, P = 0 only for C; = 0. Thus, in a neighborhood of
the singular point, integral curves which can correspond to a motion have the form

U = Cye®7, P =Cael07,  §=Cuer® + Cy2u et

Trajectories enter the singular point for 7 — «, It is evident that U = P in the neighborhood of the
singular point, i.e., the line U =P is a separatrix in the UP plane. We find the dependence of U on A, We
have @ — a)T = In(U/Cy), then

h—1=Cy(U]Capl e 4 24727,
dh /AU = Co (U | Ca)* 2= Cy™t - 2071

Since @ < 0, then for C, # 0, U— 0, d\ /dU — o, and all the integral curves are tangent to the line
U=0. IfCy=0,thenA =1+ 201U, and this equation determines the direction (second separatrix) along
which a single trajectory comes into the point (1, 0, 0).

Thus, if 2 continuous flow regime is realized, the flow almost always takes place without a weak dis-
continuity.

Actually, since almost all (except for one) of the trajectories come into the point (1, 0, 0) with zero
slope (dU/ dX = 0), they join with the zero solution with no discontinuity in the first derivative of the speed;
there is no discontinuity in dP/ d\ since

. dP . dPdu
lim —— =lim

; a4V g
1o @R av an

4. In the numerical calculations we first constructed a solution, for various values of o, which comes
into the point (1, 0, 0) with a zero slope. The point of intersection of the integral curve with the initial data
line determines the value of the piston speed un* separating two essentially distinct flow regimes: one with
a shock wave and one without, It is clear that as « increases (i.e., as the coefficient n of dry friction in-
creases) the value of up* increases and approaches a limiting value,

In the second stage of our calculations we determined, for various values of «, how the pressure on
the piston varied with its speed, For a value of @ = —1.75 we found the following dependence:

Up' 0.25 0.53 0.56 0.75 1.06
P, 023058 0.62 0.92 1.20

In the third stage, for @ = —1.75 we determined how the speed of the perturbation front varied with
the piston speed:

Up, 025 0.53 0.56 0.79 1.06 1.18
U 1 1 1 11 13 14

Thus we established that for a given free-flowing medium there is, for small piston speeds, a con-
tinuous flow without weak discontinuities; at some speed a weak discontinuity occurs; as the speed increases
further a shock wave results.

We note, in conclusion, that a similar problem was considered in [2] wherein the medium was assumed
to be incompressible; an analogous problem in the planar case was solved in [6].

Difficulties in studying the system of equations (3.1) did not permit an analytical study of the stability
and uniqueness of the solutions of this system to be made; however, the results of a numerical study, car-
ried out in connection with a program presented in a report to the First All-Union Seminar on the Theory
of Models of Continuum Mechanics [7], confirmed, with good accuracy, the results obtained in an approxi-
mate solution of the system (3.1),

The authors thanks T, F. Kryukov for performing the major part of the calculations.
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